CII Research Team 373

Reinventing Project Delivery Through Modular Chemical Process Intensification

James O'Connor, The University of Texas at Austin Olivier J. LeNormand, The Dow Chemical Company

A fraction of the plant volume! 14% less OPEX! 1/5th the payback period!

Nearly twice the NPV !

HOW? MCPI

What is MCPI?

Modular Chemical Processing Intensification (MCPI) makes use of new technology that's smaller, safer, and more energy-efficient, and/or combining multiple operations into fewer ones

– Argonne National Laboratory

Modularization: Moving work-hours to a beneficial fabrication site

19-4971

Prior Modularization Research: Five Solution Elements (RT-283)

Top 4 (of 21) Modularization Critical Success Factors

Preliminary Transportation Evaluation Alignment on Drivers Owner's Planning Resources and Processes Timely Design Freeze

21 Critical Success Factors by Implementation Responsibility and Timing

Business Case Analysis Model

Timing of Modularization Commitment

Execution Planning Differences

Ways of doing business can be *very different* with Modularization

107 items pertaining to 21 topics

Process Intensification

Benefits of Process Intensification

Process intensification is just innovation at the chemical process level

Keller, G.E., and Bryan, P.F. (2000). "Process engineering: moving in new directions." Chemical Engineering Progress, January, pp. 41-50.

Modular Chemical Process Intensification Solar Thermochemical Processing

Plant construction is changing from conventional stick-built to the centralized manufacturing, transport, and delivery of manifold modules.

Chemical Process Intensification

Conventional Heat Exchanger

Parameter	Units	µchannel HX	Commercial HX
HX mass	Kg	5	70
HX volume	L	1.25	35
Duty	Watts	3500	3500
Effectiveness	%	87	<80
Side 1, Air dP	in H2O	4.3	4.3
Side 2, Air dP	in H2O	3.1	3.1

PNNL Heat Exchanger

14X reduction in mass 28X reduction in volume Higher effectiveness

Chemical Process Intensification

Conventional Heat Exchanger

Parameter	Units	PNNL HX	Commercial HX
HX mass [1]	g	432	2285
HX volume [2]	cm ³	134	~1278
Duty	W	155	136
Effectiveness	%	92.2	80.0
Side 1, Air dP	psi	0.3	<1 psi
Side 2, Air dP	psi	0.9	< 1 psi

[1] Mass does not include tubing connections.

[2] Approximate volume occupied by heat exchanger.

PNNL Heat Exchanger

5X reduction in mass 10X reduction in volume Higher effectiveness

Chemical Process Intensification

Guiding Principles for Process Intensification

- Maximize effectiveness of intramolecular and intermolecular events.
- Give each molecule the same processing experience.
- Optimize driving forces at all scales and maximize the specific surface areas to which they apply.
- Maximize synergistic effects from partial processes.

Tom Van Gerven and Andrzej Stankiewicz (2009). "Structure, energy, synergy, time – The fundamentals of process intensification." *Industrial & Engineering Chemistry Research*, 48(5): 2465-2474.

Symbioses between Modularization and Process Intensification: Mutually Beneficial Linkages

- Smaller process intensification equipment and denser process intensification plant layouts facilitate modularization.
- Module mobility provides advantages:
 - geographically distributed customers/markets
 - energy sources/feedstocks
 - distribution challenges
- Capacity flexibility is possible with module numbering-up.

Background of Case Studies

CASE STUDY 1 CASE STUDY 2		CASE STUDY 3
Specialty chemical driven	Commodity chemical driven	Commodity chemical driven
by manufacturer-operator	by developer-supplier	by developer-supplier
with the goal of	with the goal of providing	to address storage and
reducing CAPEX	cheaper feedstock	distribution challenges

Case Study 1

Case Study 1

PERSPECTIVE	Manufacturer-operator	
GEOGRAPHICAL DISTRIBUTED	Customer	
	Specialty chemical	
	OTS Tubular RX Batch to Continuous	
CLIENT MOTIVATION	Reduced CAPEX	
PLANT SIZE REDUCTION	Vol = 250 x	
PHASE OF ASSESSMENT	1 year post-Pilot	
NUMBERING-UP?	No numbering-up	

CASE STUDY 1

Specialty Chemical Production

(ISBL) CAPEX-Driver Differences

CASE STUDY 1

Specialty Chemical Production

Site and module footprint

CSB 10,000 ft² MCPI **200** ft²

Project Frame and Basis

	Mode	Reactor	Cycle time (hours)	Heat transfer area (ft ²)	Heating time (hours)	Heat Ioss (kW)	Flushing material (gallons/ batch)	Nitrogen purge (SCF/ batch)	Cooling system
CSB	Batch	12,000 gal. paddle mixer	48	628	10	17	1500	2800	water
МСРІ	Continuous	Tubular reactor	N/A	39	N/A	1.2	N/A	N/A	air

CAPEX

	Total Installed Cost	Engineering Cost
CSB	\$3,500,000	\$350,000
MCPI	\$450,000	\$55,000

Time until Production (weeks)

CAPEX, OPEX, NPV, and Payback Period

CAPEX (USD/MT)	NPV	PAYBACK PERIOD (MONTHS)
MCPI is 87% lower	MCPI is 1.9 times higher	MCPI is 80% shorter
CSB: 714 MCPI: 90		CSB: 12.3 MCPI: 2.5
O&M FTE	COST OF POWER & UTILITIES	OPEX (USD/MT)
MCPI is 91% lower	MCPI is 40% lower	MCPI is 14% lower
CBS: 9 MCPI: 0.8	CSB: \$40 K MCPI: \$24 K	CSB: \$6.23 M MCPI: \$5.37 M

Six Top Drivers of Superior MCPI Capital Efficiency:

- Pl equipment is smaller, cheaper, and available off the shelf
- Unit **productivity rate improvements** for module fabrication
- Pre-shipment testing of modules enhances performance assurance
- Lower weight of MCPI means simpler and lower-cost foundations, support structure
- Reduced module installation time and effort (SIMOPS)
- Earlier recovery of investment from early production and sales

CASE STUDY 1

Specialty Chemical Production

Backup MCPI train is a very attractive option

NPV Comparison ...given MCPI has a 2nd Backup Train

Case Study 2

Brownfield

Leveraging Cheap Distributed Energy

Conventional Stick-Built (CSB)		
	MCPI*	

Plant Area (146k MTPY Capacity)

*MCPI has 5 modules within a single train

	Scale-up rate	Footprint	SIMOPS impact
CSB	Full capacity in 3 years	141 K	High
MCPI	2X increase in capacity year-to-year	18 K	Minimal

Leveraging Cheap Distributed Energy

Comparison: PI / Process / OPEX Features

Same rated capacity (18,250 MTPY)

Same production rate (76 lbs/min)

	Raw Material Preprocessing	Waste Management	Operations Staff
CSB	De-sulfurization required	Needs a separate waste management unit	Scales with plant size
MCPI	None	Minimal waste	8 FTE (any # of trains)

CASE STUDY 2

Leveraging Cheap Distributed Energy

Other Assumptions

	Total Installed Cost (TIC) (1 train = 18,250 MTPY)	Numbering-up Learning Rate	NPV comparison at lifetime of plant (25 years)
CSB	\$66M (based on industry data)	80%	Scenario 1: higher Scenario 2: same
MCPI	\$44.5M (based on Sievers model)	N/A	

Utility costs > feedstock gains even with lower utility rates Lower cost of innovative PI equipment Faster time-to-market

Leveraging Cheap Distributed Energy

SIX TOP DRIVERS

- Increased efforts for engineering of new technologies
- Higher capital expenditures for new advanced equipment
- Reduced time of fabrication of equipment (parallel fabrication, reduced size, piping, etc.)
- Lower energy demand (i.e., reduced energy input and losses for reactions)
- Faster-time to market for new investments; earlier product sales due to shorter processing times
- Economic benefits from earlier completion; Earlier recovery of investment from early production and sales

Key drivers that were NOT indicated as top drivers by the case study partner

Case Study 3

Distributed Commodity Production

CAPEX (ISBL) Features

Conventional Stick-Built (CSB) мсрі

52X reduction in plant area

	Deployment Schedule	Footprint	Brownfield SIMOPS impact	
CSB	Full capacity in 3 years	Smallest 24,000 ft ²	High	
МСРІ	2x increase in capacity year-to-year	460 ft²	Minimal	

Maximum

Distributed Commodity Production

OPEX Features and Other Assumptions

Same rated capacity, 1 train = 11,200 MMSCF (300 Nm³/h)

Same production rate (244 lbs./min.)

	PI Technology	Operations Staff	Design Maturity	Numbered-up Skids
CSB	None	Scales with plant size	N/A	N/A
МСРІ	Modified reactor and PSA system	1 FTE (1-2 skids), 2 FTE (3-5 skids)	7 years into production (~230+ deployments)	3

MCPI

Distributed Commodity Production Total Production Cost: MCPI vs. CSB

- Total production cost for MCPI is relatively lower up to three trains
- Findings align with the case study partner's deployment strategy of numbering-up to three trains; thereafter moving to a mid-sized or a large-sized CSB plant

CASE STUDY 3

Distributed Commodity Production CAPEX Comparison (CSB : MCPI)

- Interconnection systems (piping and electrical) are the primary drivers for reduced MCPI CAPEX
- · Equipment costs for CSB become lower than those for MCPI above a 2-train capacity
- Other costs (engineering, buildings, instrumentation, and contingency) are lower for MCPI relative to CSB with one exception: instrumentation for a 5-train capacity is greater than for CSB.

Distributed Commodity Production

26 Drivers from the Literature / 6 Top Drivers

- Design effort reduction from DOBM for second, third, fourth, etc. modules
- Reduced CapEx due to reduced number of components
- Module fabricator learning curve benefits from standardization (DOBM)
- Reduced equipment assembly/installation time and labor effort
- PI equipment requires fewer interconnecting systems
- Reduced construction footprint, less land, less infrastructure, etc.

Case Study Key Learnings

- 1. Conversion from **batch-to-continuous** chemical processing enhances CAPEX reduction and time-to-market
- 2. Cost of process intensification technology is important
- 3. PI technology can significantly reduce the cost of interconnecting systems

Recap / Closure

MCPI challenges old plant design paradigms and offers new opportunities Substantial benefits may be realized, if managed Visionary champion is critical to advance MCPI within large organizations

Questions?