

## **Modularization: When Is It Effective?**



# **Russell Shulz** Project Director; Fluor

#### Modularization Overview

- Introduction
- When is Modularization Effective?
- Industry Implementation of Modularization
- Industry Terminology
- When Modularization Decision Needs To Be Made
- Execution Approach Differences
- Benefits of Modularization
- Challenges
- Market Trend
- Conclusion
- Q&A



#### Modularization Introduction

- Modularization is an execution approach for design, procurement, contracting and construction that shifts site construction hours away from the site
- Includes skids, preassemblies, entire process structures, machines, and other structures including

bridges





#### Modularization Introduction – Very Large Module (>600Tons)





#### Modularization Introduction – Small Truck-able Module (<60Tons)





#### Modularization Introduction – Pipe Rack Modules





#### Modularization Introduction – Ship Mounted Module





#### Modularization When is Modularization Effective?

- Client business drivers supporting module design:
  - Remote site access
  - Severe site weather constraints
  - Schedule-driven improvement
  - Limited availability of regional skilled labor/ imported construction labor/ man camps
  - Extensive Factory Acceptance Testing (FAT) desired
  - High module potential / repeatable facility construction
    - High density piping areasMay be the only option





## Modularization Industry Implementation of Modularization

#### Modular facilities world-wide

- Fixed and floating offshore applications
- Onshore production and pipeline projects

#### Remote arctic & temperate locations

 Remote from tidewater, with constraints of land transport logistics and cost

### Global Industries using Modularization

- Infrastructure (bridge sections, buildings)
- Power (HRSGs, equipment and piping, piperacks)
- Manufacturing and life sciences (process buildings)
- Mining (process facilities, piperacks)
- Upstream (offshore installations)



Downstream (process equipment, piperacks)





### Modularization Industry Terminology

| Module Type                    | Size                                                            |
|--------------------------------|-----------------------------------------------------------------|
| Very Large Modules (VLMs)      | > 600 tons                                                      |
| Large Modules                  | 100 to 600 tons                                                 |
| Intermediate / Medium Modules  | 60 to 100 tons                                                  |
| Small / Truckable Modules      | 60 tons or less                                                 |
| Piperack Modules               |                                                                 |
| Skid-mounted Equipment Modules |                                                                 |
| Hybrid Modules                 | Partially in the fab. Yard<br>Finished and assembled<br>on site |
| Barge / Ship Mounted Modules   | Such as FPSO, FSOs,<br>FLNG                                     |





# Modularization When Modularization Decision Needs To Be Made

- 1. Define Business Drivers
- 2. Accumulate Information
- 3. Strategic Evaluation
- 4. Develop Alternative Cases
- 5. Decide Level of Modularization and Complex Preassembly
- 6. Develop Estimates, Quantities, and Schedules
- 7. Complete Project Execution Plan



engineering and construction contracting associatio

## Modularization When Modularization Decision Needs To Be Made

 The decision to modularize on a project needs full and early commitment from all stakeholders.





#### Modularization Execution Approach Differences

- Early Engineering
- Early Procurement
- Activities Sequence
- Fabrication Organization
- Interface Management
- Operations &
  Maintenance







engineering and construction contracting association

# Safety

- Work shifted to controlled shop environment
- Reduced total site hours
- Reduced work at high elevations
- Potential reduction in crane usage









## Cost Savings

- Reduced quantities for smaller footprint
- Productivity gain for work shifted to module yard
- Reduced indirects with less field hours







| Materials Quantities Comparison * |                    |  |
|-----------------------------------|--------------------|--|
| Prime Account                     | Quantity Delta (%) |  |
| Excavation, Backfill & Piling     | -5                 |  |
| Concrete                          | -30                |  |
| Structural Steel                  | 45                 |  |
| Mechanical Equipment              | 0                  |  |
| Piping                            | -15                |  |
| Electrical                        | -20                |  |
| Instrumentation                   | 0                  |  |
| Insulation                        | -15                |  |

\*Maximized Process Units and Pipe Racks Modularization



#### Labor Relocation to Module Yard(s)

| Direct Field Cost    | Percent Work in<br>Module Yard(s) |
|----------------------|-----------------------------------|
| Civil                | 0%                                |
| Concrete             | 0%                                |
| Structural Steel     | 80%                               |
| Buildings            | 30%                               |
| Mechanical Equipment | 30%                               |
| Piping               | 63%                               |
| Electrical           | 20%                               |
| Instrumentation      | 20%                               |
| Insulation           | 65%                               |
| Average*             | 44%                               |





#### Modularization Challenges

- Increased Planning -Logistics -Engineering / Procurement Early Engineering / Procurement Increased Cost of Engineering **Increased Shipping Cost Increased Steel Quantities** Increased Equipment damage potential Additional rigging / lifting requirements
- Module plan interfaces







#### Modularization Market Trend

- Modules are becoming more condensed
- Dependence on fit for purpose designs to drive down costs
- Start up times after minimized Shipping solutions are very creative, nothing to big or too small
- Project & risk management overcoming challenges to deliver success





#### Modularization Conclusion

- When is it efficient to Modularize?
- Decision Timing & Planning
- Modularization Benefits and Challenges
- Owner operations personnel to be involved from start
- Design takes longer, but installation at site means overall project schedule improvement
- Complete project team buy-in and alignment







## Modularization





