BrightSource Energy

Ivanpah Solar Electric Generating Facility

Engineering and Construction Contracting Conference, San Antonio Texas

Michael Bobinecz, Vice President September 7, 2012

brightsourceenergy.com

Ivanpah Project Facts

IVANPAH Project Facts

A BRIGHTSOURCE ENERGY CONCENTRATING SOLAR POWER PROJECT

IVANPAH AT A GLANCE

The world's largest solar thermal project

- Size: 3,600 acres
- Power Production: 370 MW (nominal)
- Homes Served Annually: 140,000
- Customers: PG&E and SCE
- Owners: NRG, Google, BrightSource
- DOE Loan Guarantee: \$1.6B
- Project Financing: \$2.2B
- Construction Commenced: Oct 2010
- Construction Status: 50% + complete
- Construction workers: 2,000
- Expected Completion: 2013 (Q2 Q4)

Concentrated Solar Power Overview

IVANPAH PROJECT SITE

Heliostat

SRSG (Boiler)

RILEYPower
 A Babcock Power Inc. Company

Concentrated Solar Power Main Components

SOLAR RECEIVER / BOILER

Concentrated sunlight converts water in a boiler to high-temperature steam.

HELIOSTATS

Software-controlled field of mirrors concentrate sunlight on a boiler mounted on a central tower.

TURBINE Steam powers turbine to produce electricity – then is converted back to water through an air-cooled condenser.

AIR-COOLED CONDENSER

Low-impact design, using over 90% less water than competing solar thermal technologies that use conventional wet-cooling.

AUXILIARY GAS-FIRED BOILER Allows for hybridization, increased output and the enabling of more reliable electricity production.

OPTIMIZATION / CONTROL SOFTWARE

Proprietary optimization software and Solar Field Integrated Control System manage heliostat positioning to optimize concentrated sunlight on the boiler.

STORAGE

When integrated, cost-effective thermal energy storage extends solar electricity production into later parts of the day after the sun goes down.

Play "Fly by" of Power Block

0

Solar Tower & SRSG

- Top of Solar Receiving Steam Generator (SRSG)
 = 450 feet
- Top of Steel Structure = 327 feet
- 7,533 tons of steel
- 9 tower tiers
 - Tiers 1 4 = Stick built
 - Tiers 5 9 = Modularized, including pipe & hangers

Tuned Mass Damper to reduce tower movement = 100 tons

SRSG – Inside out, upside down boiler

Unit 1 Construction Progress

	Unit 1	Unit 2	Unit 3
Tower	 At final height of 459' Receiver / Boiler installation in progress 	 At final height of 459' Receiver / Boiler installation in progress 	 At final height of 459' Receiver / Boiler installation in progress
Power block	 Turbine in place Air Cooled Condenser (ACC) construction ongoing 	 Turbine in place Air Cooled Condenser (ACC) construction ongoing 	 Turbine in place Air Cooled Condenser (ACC) construction ongoing
Solar field	 Pylons: 92% complete Heliostats: > 45,000 installed Installation rate ~ 500 / day Solar Field Integrated Control System (SFINCS) installed 	 Pylons: > 35,000 installed Heliostats: > 1500 installed 	 Pylons: Installation scheduled to start 6 / 2012
Milestones	5/14: Main boiler feed-pump	 5/22: SRSG steam drum 	 5/23: WSAC foundation placement 5/31: 1st SRSG boiler lift 5/31: Auxiliary boiler foundation

Ivanpah – Original Artist Rendering

Overview - Ivanpah Site as of Feb 2012

Unit 3 Unit 2 Common Area

Unit 1

Jell C.

Overview - Ivanpah Site as of May 2012

Unit 3

Unit 2

Common Area

Substation (SCE)

Construction logistics area

Unit 1

Photo taken May 2012

Overview - Ivanpah Site as of May 2012

Overview – Ivanpah Site as of July 2012

Integration of supply and assembly at site

Integration of Supply and Assembly at Site

Integration of Supply and Assembly at Site

BrightSource Supply Chain Key Figures

- 22,000,000 key Heliostat components
- 30,000 Ton of Heliostat support structural steel (~3 X the total metal in Eiffel Tower)
- 2,000 Km of cables
 (~1/6 of Earth's diameter)
- 4,000 truck loads; average of 55 per week
- Over 7,000 schedule tasks
- Import/Export via ~10 ports (Haifa, Shanghai, Ningbo, Hamburg, Bremen...

24

Pylon Insertion Machine

Transportation of Heliostats to Solar Field

Installation of heliostats; 500/day

Unit 1 Solar Field looking at Unit 2 & Unit 3

Ivanpah – Current Status

- Construction is half-way complete
- Installed 27 miles of plant piping
- Assembled and installed about 100,000 pylon supports and 50,000 heliostats
- Installed 3,000 heliostats a week in the last three weeks "one-a-minute"
- Solar towers for Units 1, 2, 3 are erected
- SRSG for Units 1 and 2 are erected; Unit 3 tops out next month
- Unit 1 to enter testing and commissioning phase

Solutions for First of a Kind Challenges

- Logistics in assembling and transporting 173,000 heliostats across 3,600acre project site
- Operation and use of 3 tower cranes at 450 feet tall
- Only 22 of these cranes in world
- Lifting 90-ton modules to a height of over 300 feet

Labor and Equipment

- Peak construction workers = over 2,000
- Project supports additional jobs throughout supply chain
- Local building trades staffing project
- More than 50% of ocean freight is shipped aboard USflagged vessels
- Pay prevailing wages
- Construction equipment selection minimizes environmental impact

Low Impact Development

- Highly land efficient; 1/3 less land per MWh
- Provides for heliostat placement and flexible plant design to work within natural land contours
- Avoids impacts and costs of extensive land grading and concrete pads

Key design parameters:

- Water Use: dry-cooling, conservation and closed-loop recycling
 - Uses air instead of water to condense steam
 - Uses over 90% less water than CSP using traditional wet-cooling

A "Cool Project" – World's Largest CSP

Environmental Benefits

1,000,000	 MWh of electricity per year ~300 average sunny days
140,000	 Typical U.S. homes powered per year
70,000	 Cars off the road, per year (avoided emissions equivalent)
12,300,00	 Metric tonnes of avoided CO₂ over 30-year life-cycle (363,000 MT/yr)
123,350 (100 AF)	 Cubic meters of water used per year (less than 300 U.S. homes)
Less than 1%	 Concrete surface impacted. None used with pylons. Low impact construction design.

"Ivanpah is an iconic infrastructure project that will set the course for the future of renewable energy in the US and around the world," said John Woolard, President & CEO, BrightSource Energy. Enough reflective area to cover approximately 600 football fields...enough mirrors to replace all the windows of the Empire State building...54 times

Solar Thermal Power Tower Technology Solar To Steam

Yasser Dib San Antonio Sep 7th, 2012

brightsourceenergy.com

BrightSource Energy designs, develops and deploys concentrating solar thermal technology to produce high-value steam for electric power, petroleum and industrial-process markets worldwide.

Chevron's Coalinga Project - Solar-to-Steam for Thermal Enhanced Oil Recovery

Coalinga Solar-to-Steam Flow Diagram

Coalinga Solar-to-Steam EOR Project

Key Design Parameters:

- 29MWth for Enhanced Oil Recovery (EOR)
- 100 acres
- 98.5 meter receiver tower with boiler
- 20.5 meter boiler
- 3,822 heliostats (55,000 m² reflecting area)
- Mechanical completion / testing complete

Selected Technology Features:

- Saturated steam
- Heat exchanger
- Closed loop boiler water feed
- Ties into existing steam injection system

Chevron's Coalinga Project - Solar-to-Steam for Thermal Enhanced Oil Recovery

Power vs. EOR Application Differences

	Power	EOR
Power Block	Power Block	No Power Block
Receiver	Evaporated + Superheated + Re-heater	Evaporator
Steam	Temperature: 560+ °C Injected into the Turbine	Saturated Steam 300+ °C Injected down the reservoir
Pressure	160 + Bar	60-70 Bar
Heat Exchanger	No Heat Exchanger	Heat exchanger between clean water / dirty water loops
Solar Field + Tower	same	same

Technology Scale-Up

Industry-Leading Technology Roadmap

- MW Increased size drives power block cost effectiveness
- **C** BAR High temperature and increased pressure drive turbine efficiency and lower costs
- **MRS** Additional capacity and storage yield higher efficiency and increased asset utilization

BrightSource Power Tower Components

OPTIMIZATION/ **CONTROL SOFTWARE**

Proprietary optimization software and Solar Field Integrated Control System (SFINCS) manage heliestat positioning to optimize concentrated sunlight on the boiler

Software-controlled field of mirrors concentrate sunlight on a boiler mounted on a central tower

STORAGE

SOLAR RECEIVER

Concentrated sunlight converts water

in a boiler to high-temperature steam

(BOILER)

When integrated, cost-effective thermal energy storage increases solar electricity production

POWER BLOCK

Steam powers turbine to produce electricity. then is converted back to water through an air-cooled condenser. Auxiliary boiler allows for hybridization, increasing output and enabling more reliable electricity production

AIR COOLED CONDENSER

AUXILIARY BOILER

Heliostats Overview

Two flat glass mirrors (2.3m x 3.3m) mounted on a single pylon equipped with a computercontrolled drive system

- Heliostat individually positioned to optimize annual plant output and revenue
- Dual-axis tracking significantly increases plant output, particularly in winter months and late afternoon hours of the day
- Low-impact design avoids costly extensive land grading and concrete pads

Proprietary Optimization Control Software Overview

Solar Field Integration and Control System (SFINCS)

- Algorithmic software determines the optimal position of each heliostat accounting for the unique conditions of each project site
- Infrared Camera System
- The SFINCS control system manages distribution of energy across the solar receiver using real-time heliostat-aiming and closed-loop feedback
- On-site weather systems, and visual and infrared cameras provide real-time feedback into advanced algorithms for solar field management
- Proprietary optimization and control software maximizes project performance and power production efficiencies

Solar Field Optimization

Field layout simulation calculates optimal heliostat positioning to minimize shading, and maximize heat concentration on solar receiver

Coordinated field of heliostats enables system to achieve industry-leading steam temperature and pressure levels

Solar Receiver Overview

SRSG Infrared Image

SBMS Temperature Measurement

SOLAR RECEIVER STEAM GENERATOR (SRSG)

- Utility-scale "inside out" boiler heated by reflected solar radiation
- Proprietary coatings for maximum solar energy absorption

SOLAR BOILER MANAGEMENT SYSTEM (SBMS)

- Matches steam output to load demand
- Camera and sensors transmit real-time heat levels to heliostat control system
- Flexibility to respond rapidly to cloud cover & weather changes

CSP Technology: Areas of Focus

Solar Field

- Wireless communication and control
- Solar PV powered drives
- Mirror reflectivity, cleaning and anti-fouling
- Heliostat control and accuracy
- Improved measurement devices (flux, tracking)
- Real-time attenuation measurement and cloud coverage
- Weather forecasting, day ahead, hours and immediate

Receiver

- Advanced "selective" coatings
- Alternative heat transfer fluids
- Secondary reflectors
- Supercritical steam conditions and turbine efficiencies
- High Efficiency Storage Integration

0

brightsourceenergy.com