ISINESS USUAL Gaining Advantage in a Dynamic Project Landscape

Ten Thousand Foot Perspective on the Future of Non-Traditional **Transportation Fuels**

BUSINESS AS UNUSUAL Gaining Advantage in a Dynamic Project Landscape

Biofuels: Delivering on sector challenges (a perspective from BP)

PHIL NEW

CEO BP Biofuels

42ND ANNUAL ECC CONFERENCE

Forward Looking Statements

This presentation contains forward-looking statements based on management's current expectations, estimates and projections. All statements that address expectations or projections about the future, including statements about the company's strategy for growth, product development, market position, expected expenditures and financial results are forwardlooking statements. Some of the forward-looking statements may be identified by words like "expects," "anticipates," "plans," "intends," "projects," "indicates," and similar expressions. These statements are not guarantees of future performance and involve a number of risks, uncertainties and assumptions. Many factors could cause results to differ materially from those stated. These factors include, but are not limited to, changes in the laws, regulations, policies and economic conditions of countries in which the company does business; competitive pressures; successful integration of structural changes, including acquisitions, divestitures and alliances; research and development of new products, including regulatory approval and market acceptance, and seasonality of sales of agricultural products.

ausiness As UNUSUAL

42¹⁰ Annual Ecc conference

Biofuels: already a significant sector

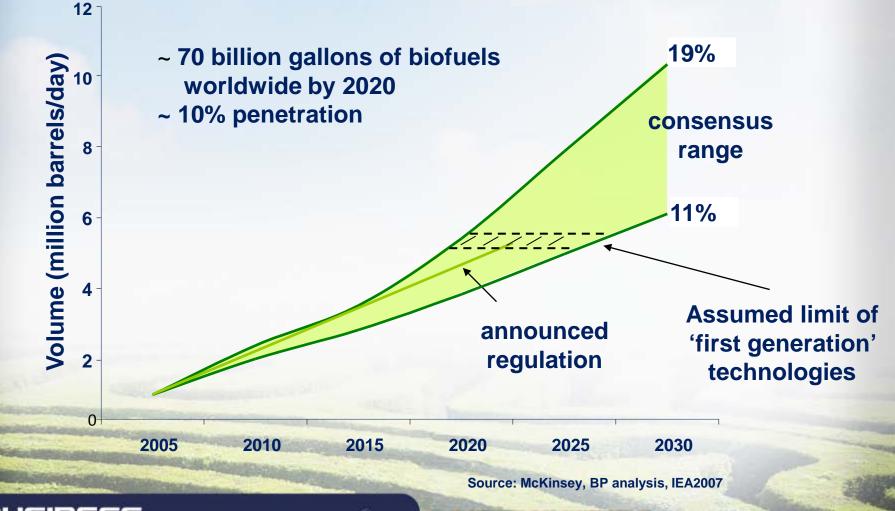
Biofuels projections globally*

Assets operating	Assets under construction	Assets proposed
36,437 (mg)	9,803 (mg)	49,548 (mg)
868 (mbbl)	233 (mbbl)	1,180 (mbbl)
2.4 (mbd)	0.6 (mbd)	3.2 (mbd)

In the US*

AS UNUSUAL

BUSINESS

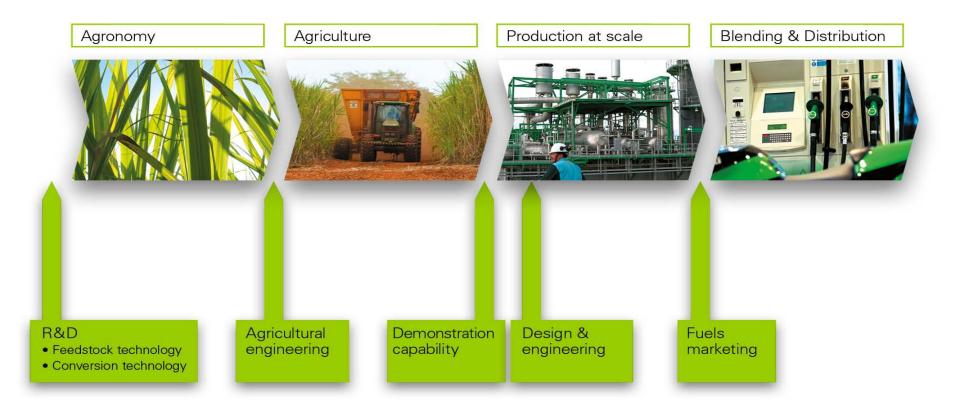

Assets operating	Assets under construction	Assets proposed	
12,674 (mg)	3,820 (mg)	28,061 (mg)	
301.8 (mbbl)	90.9 (mbbl)	668.1 (mbbl)	
0.8 (mbd)	0.25 (mbd)	1.8 (mbd)	

* source: Global Biofuels Centre data, August 2010

42^{AD} ANNUAL ECC CONFERENCE

Significant growth potential

Global biofuel penetration of gasoline/diesel demand



BUSINESS AS <mark>UNUSUAL</mark>

42²⁰⁰ ANNUAL ECC CONFERENCE

Biofuels: a complex activity set

AS UNUSUAL

42^{MD} AMNUAL ECC CONFERENCE

Biofuels must be....

Ethanol from sugarcane and energy grasses compete

Source: adapted from Booz Allen Hamilton analysis based on information from IEA, DOE and interviews with super majors; IBGE, UNICA, Conab, CGEE, Unicamp, CTC, , BP Biofuels Team

AS UNUSUAL

42⁴⁰ ANNUAL ECC CONFERENCE

BP's response....

UK: Bioethanol plant under construction

BUSINESS AS UNUSUAL

424D ANNUAL BCC CONFERENCE

US Case Study: lignocellulosic ethanol

- Using enzymes to convert energy cane to ethanol in the US
- Scale-up is the challenge

BUSINESS

AS UNUSL

Feedstock choice impacts yield and land requirement

DATA	UNIT	VALUE
RFS2 cellulosic biofuel requirement (2022)	billion gallons	16
Average cellulosic plant capacity	million gallons	75
Capacity utilization	%	90
Approximate number of plants needed to satisfy RFS2 requirement	number	200
200 plants @ USD 5 – 10 per gallon capex cost	Billion US \$	80 - 160

42⁴⁰ Annual Ecc Conference

Conclusion

- Biofuels are real
- Significant opportunities in the sector
- The sector must work together to build a commercial scale biofuels industry
- There is real opportunity across the value-chain

42^{4D} ANNUAL ECC CONFERENCE

ISINESS USUAL Gaining Advantage in a Dynamic Project Landscape

Ten Thousand Foot Perspective on the Future of Non-Traditional **Transportation Fuels**

BUSINESS AS UNUSUAL Gaining Advantage in a Dynamic Project Landscape

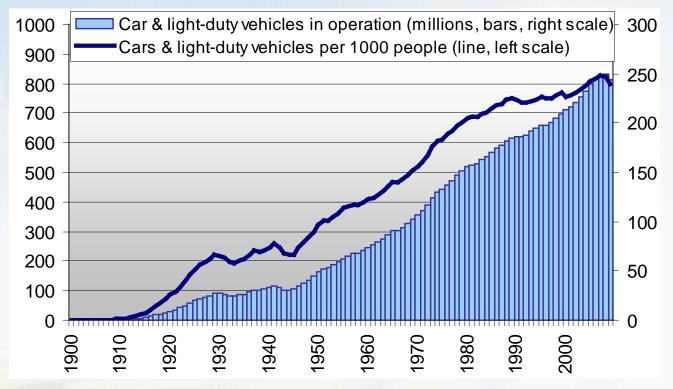
The Electrification of Transportation in the US: Future Prospects & Potential Impacts

RAPHAEL HUDSON

Manager, Global Technical Research Hart Energy Consulting

42ND ANNUAL ECC CONFERENCE SEPT. 1sT-4TH 2010 - RITZ CARLTON GRANDE LAKES - ORLANDO, FLORIDA

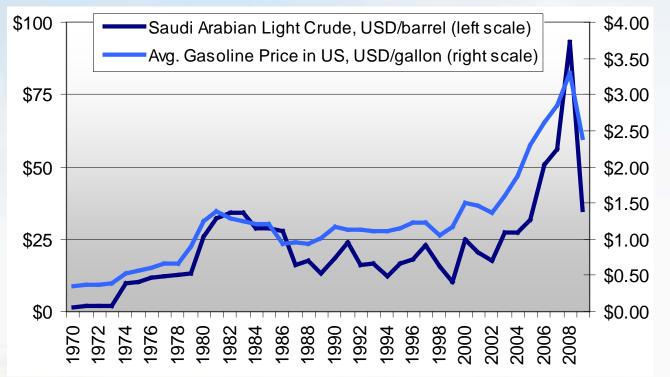
Key Points


- The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations
- Technical & Economic Feasibility of Vehicle Electrification
- The Current HEV Market Landscape
- Future Potential of Vehicle Electrification in the US
- Key Takeaways

42ND ANNUAL ECC CONFERENCE

The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations

Sources: NHWA, DOT, R.L. Polk, HEC estimates

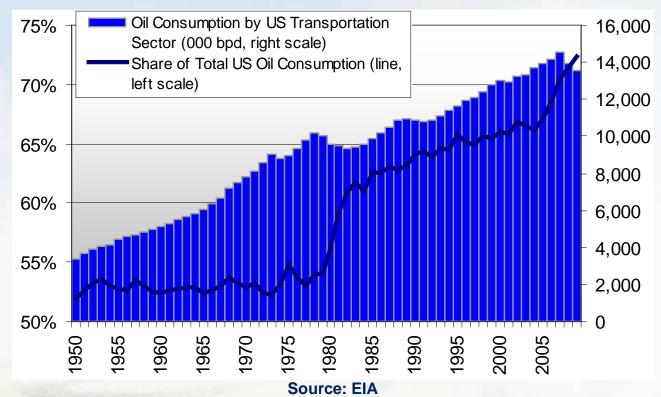

Growth of US vehicle stock has slowed in recently years, but there are still nearly 250 million light-duty vehicles out on the road today.

ausiness As UNUSUAL

42^{4D} ANNUAL ECC CONFERENCE

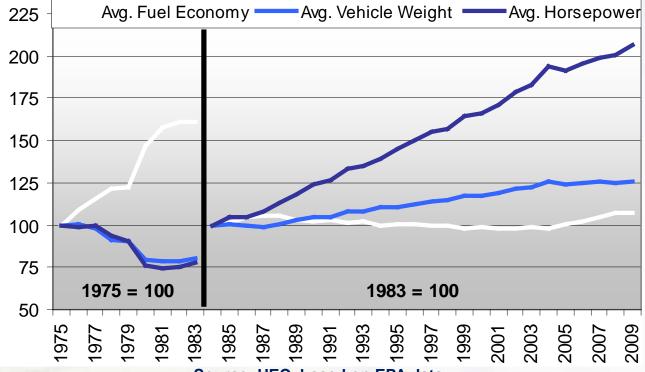
The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations

Sources: API, EIA


Oil & gasoline prices reached historical highs in 2008 & still remain relatively high (\$75/barrel) despite a sharp economic slowdown.

42⁴⁰ ANNUAL ECC CONFERENCE

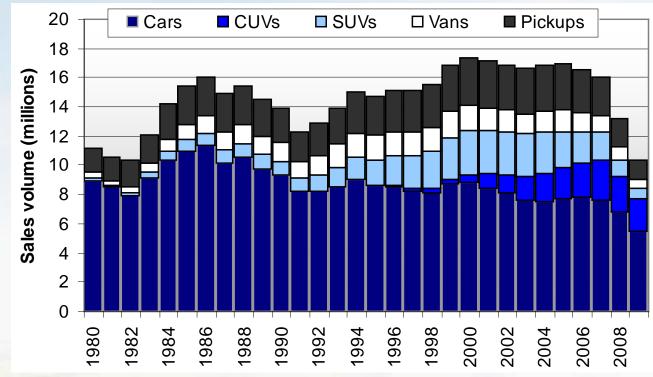
The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations


The industrial sector & utilities have cut back on oil consumption, but the transportation sector has not => its share of total US oil consumption continues to grow.

42^{4D} ANNUAL ECC CONFERENCE

The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations

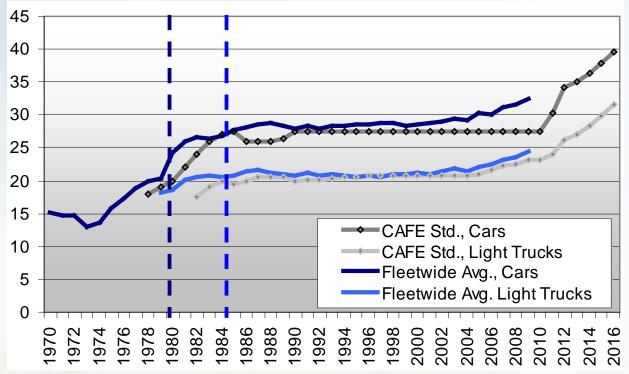
Source: HEC, based on EPA data


In the 1970s, OEMs improved fuel economy by reducing weight and horsepower, but since the early 1980s fuel economy (acc. to EPA method) has remained stagnant.

42^{MD} ANNUAL ECC CONFERENCE

The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations

Source: Ward's Auto


Thanks to cheap gasoline, consumers found it affordable to purchase bigger vehicles like pickups and SUVs - but high oil prices and the recession have changed that.

42^{4D} ANNUAL ECC CONFERENCE

The Impact of Oil Prices, CO₂ Emissions & Fuel Economy Regulations

Sources: NHTSA, EPA

Corporate Average Fuel Economy (CAFE) standards changed little in the 1980s and 1990s, but that was before age of high oil prices and global warming. CAFE will increase through 2016 and beyond.

ausiness As UNUSUAL

42^{4D} ANNUAL ECC CONFERENCE

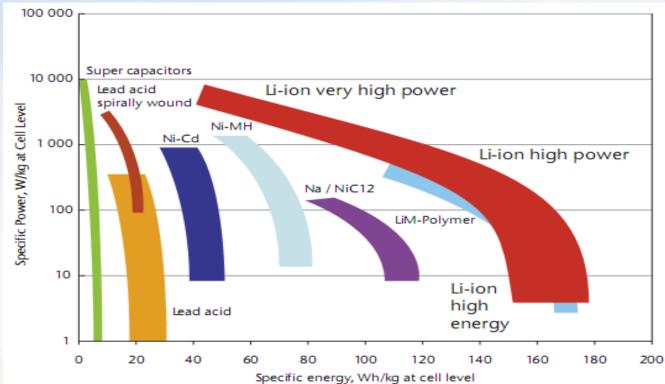
Technology	% CO2 Reduction	Cost		Cost per 1% CO2 Reduction	
Reducing Mechanical Friction of Components	3.0%	\$	50	\$	17
Electric Steering	5.0%	\$	120	\$	24
Low Rolling Resistance Tires	3.0%	\$	150	\$	50
Light Weighting	10.0%	\$	750	\$	75
Variable valve lift and timing	4.9%	\$	410	\$	84
Cylinder deactivation	3.9%	\$	415	\$	106
Gasoline direct injection	7.5%	\$	825	\$	110
Turbocharging	6.9%	\$	800	\$	116
Mild Hybrid	12.0%	\$	1,400	\$	117
Start-stop system	3.9%	\$	470	\$	121
Moderate Hybrid	18.0%	\$	2,200	\$	122
HCCI	12.2%	\$	1,800	\$	148
Full Hybrid	35.0%	\$	6,000	\$	171

Source: HEC, based on Deutsche Bank, BCG, Edmunds, Anderman (2007) data

Vehicle electrification can help meet fuel economy and CO2 emissions goals, but in the short term they are not cost competitive.

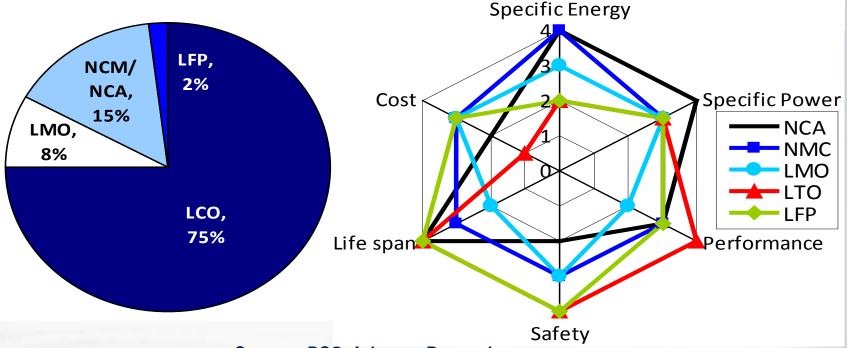
42^{4D} ANNUAL ECC CONFERENCE

Make & Model	Model Year	Trim	Engine	Price	Price Premium	EPA Combined MPG	Payback at \$3.30/g (i.e. 2008 avg. US price (years)	Payback at \$2.61/g (i.e. 2009 avg. US price (years)
Honda Civic	2010	EX	1.8L	\$20,255	\$1,045	29	2.6	3.3
Honda Insight	2010	EX	1.3L	\$21,300	φ1,045	41	2.0	
Toyota Corolla	2010	XLE	1.8L	\$17,750	\$5,050	29	8.8	11.1
Toyota Prius	2010	1	1.8L	\$22,800	φ3,030	50	0.0	
Toyota Camry	2010	SE	2.5L	\$23,165	\$3,285	26	9.2	11.6
Toyota Camry Hybrid	2010	Base	2.4L	\$26,450	ψ0,200	34	5.2	
Ford Escape	2010	XLT (FWD)	2.5L	\$24,045	\$5,815	23	12.0	15.2
Ford Escape Hybrid	2010	Base	2.5L	\$29,860	φ0,010	32	12.0	13.2
Ford Fusion	2010	SE	2.5L	\$21,225	\$6,725	25	11.8	15.0
Ford Fusion Hybrid	2010	Base	2.5L	\$27,950	φ0,725	39	11.0	
Chevrolet Malibu	2010	LT1	2.4L	\$22,715	\$2,840	26	18.0	22.8
Chevrolet Malibu Hybrid	2009	Base	2.4L	\$25,555	φ2,040	29	10.0	22.0


Source: HEC, based on Edmunds, EPA, EIA data

Because of the high cost of hybrids today, their payback period is relatively long => their ability to gain market share has been limited.

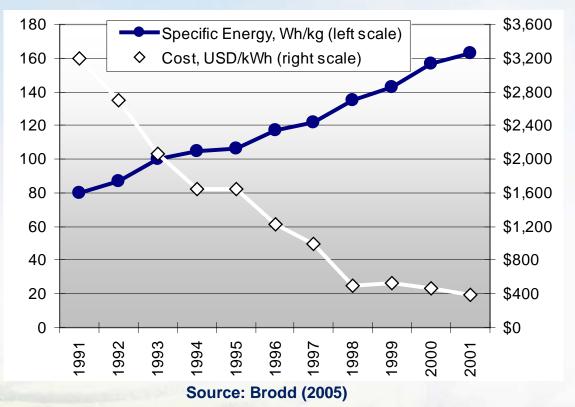
42^{4D} ANNUAL BCC CONFERENCE


Source: Saft

The main reason for the high cost of hybrids is the high cost of their batteries. New chemistries can lower cost & improve performance.

ausiness As <mark>UN</mark>USUAL

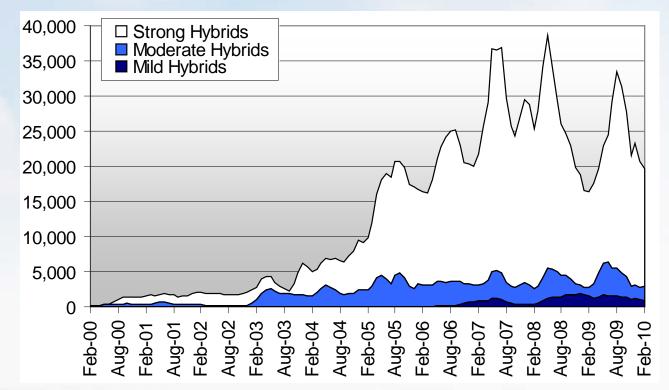
42^{4D} ANNUAL ECC CONFERENCE


Sources: BCG, Avicenne Research

Li-lon batteries - especially for automotive use - are not a mature technology. There are still many different chemistries vying for market share.

ausiness As UNUSUAL

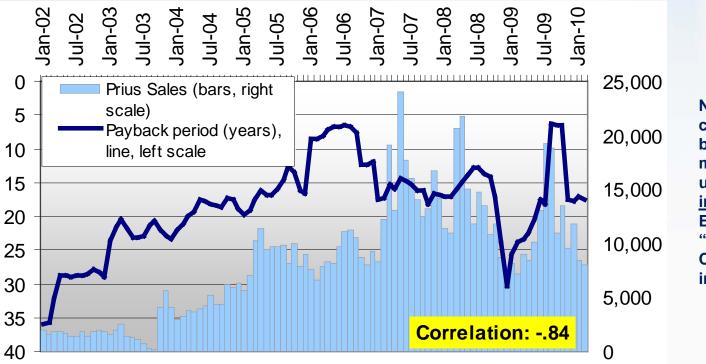
42^{4D} ANNUAL ECC CONFERENCE


As Li-lon battery technology matures, more cost reductions can be expected - this has been the case with LCO batteries for laptops and cell phones.

42^{4D} ANNUAL ECC CONFERENCE

The Current HEV Market Landscape

Source: HEC, based on Ward's Auto data


Hybrids still comprise a small part of the light-duty vehicle market but their share is growing. Consumers associate hybrids with fuel economy, so they have favored strong HEVs over mild & moderate HEVs.

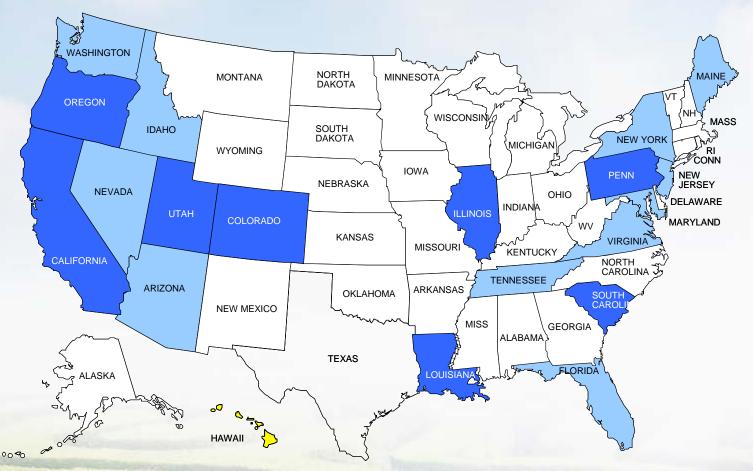
BUSINESS AS UNUSUAL

42^{4D} ANNUAL ECC CONFERENCE

The Current HEV Market Landscape

Note: Payback calculation is based on 12K mi/year of usage, and <u>include</u> the EPCAT and "Cash for Clunkers" incentives

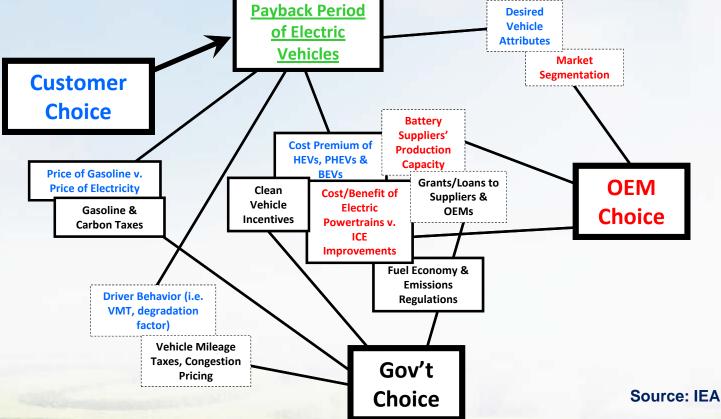
Source: HEC, based on Ward's Auto, Edmunds, Automotive News, EIA data


Sales of the Prius have shown a strong correlation to their <u>payback</u> <u>period</u> => it is not enough for a HEV to be "green," it has to offer good value.

ausiness As UNUSUAL

42⁴⁰ ANNUAL ECC CONFERENCE

The Current HEV Market Landscape


Governments- federal, state, local - are providing incentives for buyers and manufacturers of HEVs, PHEVs and EVs.

ausiness As UNUSUAL

42^{4D} ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification in the US

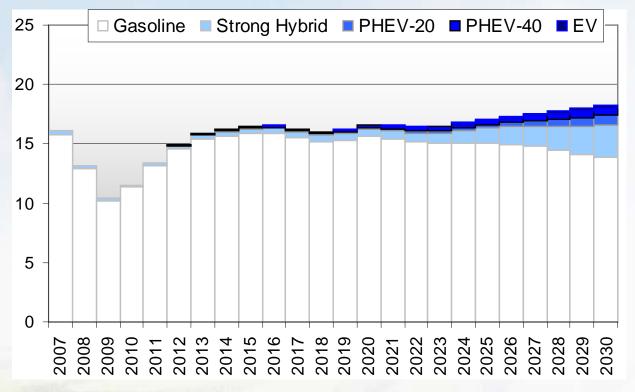
Sizing up the potential of electrification is complex: payback period is influenced by many relevant variables.

ausiness As <mark>UN</mark>USUAL

424D ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification in the US

		Base Case (i.e. 2009 WRFS)	"Green Renaissance" Scenario	"Realpolitik" Scenario	
	Rationale		Test impact of "green" government policies on electrification	Test impact of resource nationalism and trade barriers on electrification	
P a	Fuel prices Grow moderately and gradually		Gov't introduces \$4/gallon floor in 2011, and raises it to \$5 in 2020	High	
r a m	CAFE Standards	Rise to 35.5 mpg by 2020; grow moderately thereafter	Rise to 42.5mpg by 2020; grow moderately thereafter	Rise to 35.5 mpg by 2016; grow moderately thereafter	
e t	Government incentives for PHEVs & EVs	Are short-lived	Last until 2020	None	
е	Battery costs	Decline moderately	Decline quickly	Very little decline	
r s	OEM and battery manufacturer capacity	Rises moderately	Rises moderately to 2020, and grows quickly thereafter	Rises slowly	

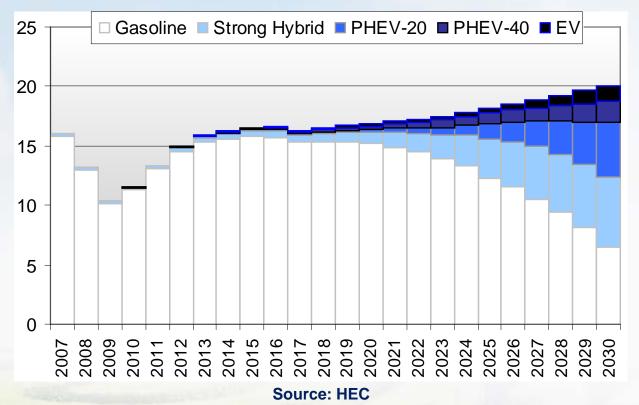

Due to complexity & uncertainty, it is best to analyze a variety of possible scenarios.

BUSINESS AS UNUSUAL

42^{4D} ANNUAL ECC CONFERENCE

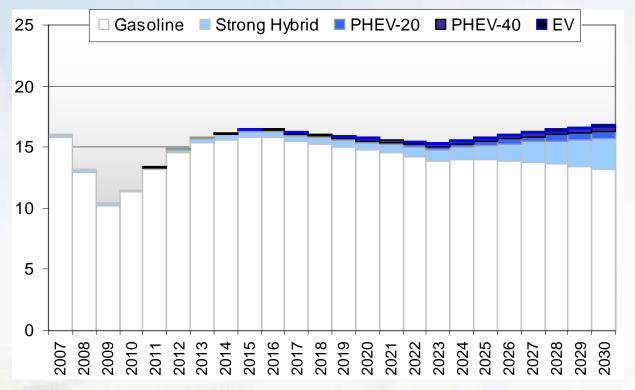
Future Potential of Vehicle Electrification, US Vehicle Sales: Base Case

Source: HEC


In the Base Case, penetration of vehicle electrification in the lightduty vehicle market grows moderately.

42^{4D} ANNUAL ECC CONFERENCE

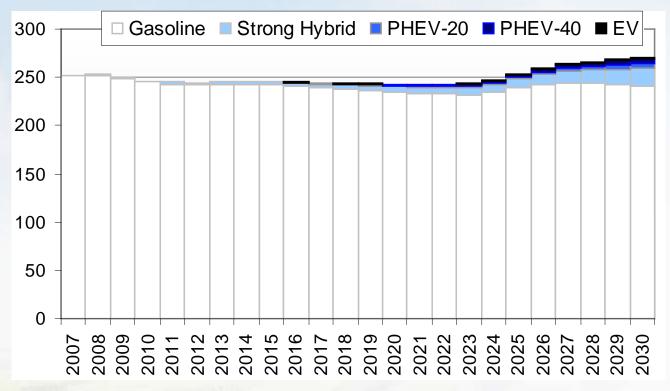
Future Potential of Vehicle Electrification, US Vehicle Sales: Green Renaissance


In "Green Renaissance," the gasoline price floor, vehicle incentives & battery cost reductions combine to spur high levels of penetration after 2020.

42^{4D} ANNUAL ECC COMFERENCE

Future Potential of Vehicle Electrification, US Vehicle Sales: Realpolitik

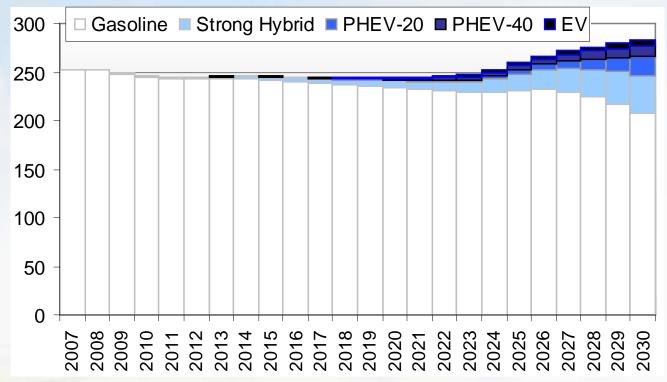
Source: HEC


In "Realpolitik," vehicle electrification penetration is modest. Total light-duty vehicle sales also stagnate.

42^{4D} ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification, US Vehicle Fleet: Base Case

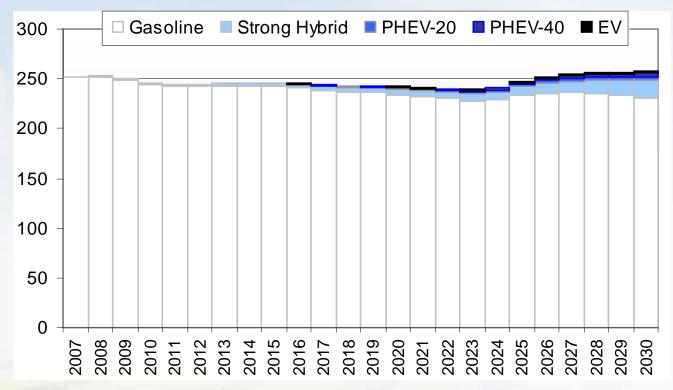
Source: HEC


In the Base Case, penetration of vehicle electrification in the lightduty vehicle market grows moderately.

42^{4D} ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification, US Vehicle Fleet: Green Renaissance

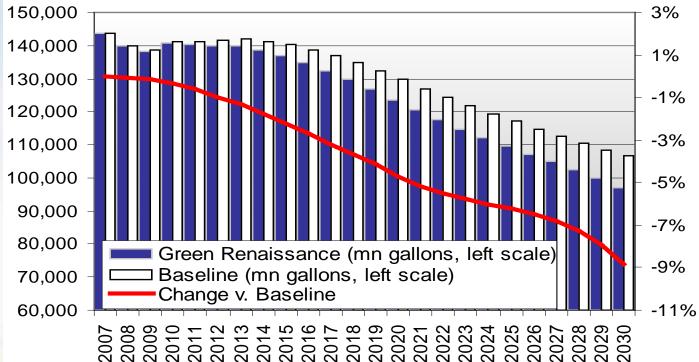
Source: HEC


In "Green Renaissance," the gasoline price floor, vehicle incentives & battery cost reductions combine to spur high levels of penetration after 2020.

42^{4D} ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification, US Vehicle Fleet: Realpolitik

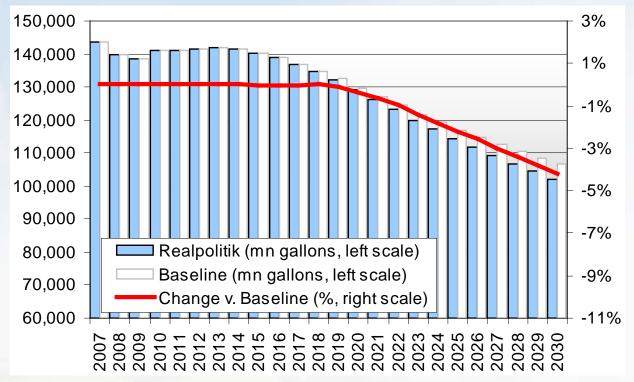
Source: HEC


In "Realpolitik," vehicle electrification penetration is modest. Total light-duty vehicle sales also stagnate.

42^{4D} ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification on US Fuel Consumption: Green Renaissance v. Base Case

Source: HEC


In "Green Renaissance," aggressive fuel economy standards & vehicle electrification combine to lower liquid fuels consumption by about 9% compared to the Base Case.

42^{4D} ANNUAL ECC CONFERENCE

Future Potential of Vehicle Electrification in the US

Source: HEC

In "Realpolitik," liquid fuels consumption also declines relative to the Base Case - mostly because lower new vehicle sales lead to fewer total light-duty vehicles in operation.

42^{4D} ANNUAL ECC CONFERENCE

Key Takeaways

Vehicle electrification in the US today suffers from high battery costs and relatively low fuel prices, <u>but</u>:

- Government policies will be necessary to help make HEVs, PHEVs and EVs more affordable until economies of scale push battery costs down further.
- Future fuel economy and criteria pollutant emission regulations will make future ICEs more costly.
- Vehicle electrification has significant upside—but only after 2020.
- Vehicle electrification also depends on the continuation of open trade: resource nationalism and trade barriers could limit OEMs' and battery producers' ability to capitalize on global economies of scale.

42ND ANNUAL ECC CONFERENCE

Key Questions Addressed by Our Next Study

- Impact of US Electrification on Lithium and Rare Earth Elements
- Issues Related to Charging Infrastructure and Electricity Generation Needs
- Impact of US Electrification on Greenhouse Gas Emissions

42⁴⁰ ANNUAL ECC CONFERENCE

BUSINESS AS UNUSUAL Gaining Advantage in a Dynamic Project Landscape

Audience Questions

42¹⁰ ANNUAL ECC CONFERENCE

ISINESS USUAL Gaining Advantage in a Dynamic Project Landscape

Ten Thousand Foot Perspective on the Future of Non-Traditional **Transportation Fuels**

